Given the root
of a binary tree and an integer targetSum
, return the number of paths where the sum of the values along the path equals targetSum
.
The path does not need to start or end at the root or a leaf, but it must go downwards (i.e., traveling only from parent nodes to child nodes).
Test Cases
Example 1:
Input: root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
Output: 3
Explanation: The paths that sum to 8 are shown.
Example 2:
Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
Output: 3
Constraints:
-
The number of nodes in the tree is in the range
[0, 1000]
. -
-10<sup>9</sup> <= Node.val <= 10<sup>9</sup>
-
-1000 <= targetSum <= 1000
Solution
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int pathSum(TreeNode root, int targetSum) {
Map<Long, Integer> prefix = new HashMap<>();
prefix.put(0L, 1);
return dfs(root, targetSum, 0, prefix);
}
private int dfs(TreeNode root, int target, long current, Map<Long, Integer> prefix) {
if (root == null) {
return 0;
}
current += root.val;
int count = prefix.getOrDefault(current - target, 0);
prefix.put(current, prefix.getOrDefault(current, 0) + 1);
count += dfs(root.left, target, current, prefix);
count += dfs(root.right, target, current, prefix);
prefix.put(current, prefix.getOrDefault(current, 0) - 1);
return count;
}
}
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def pathSum(self, root: Optional[TreeNode], targetSum: int) -> int:
def dfs(root, prefix, current):
if not root:
return 0
current += root.val
count = prefix.get(current - targetSum, 0)
prefix[current] = prefix.get(current, 0) + 1
count += dfs(root.left, prefix, current)
count += dfs(root.right, prefix, current)
prefix[current] -= 1
return count
prefix = {0: 1}
return dfs(root, prefix, 0)