A peak element is an element that is strictly greater than its neighbors.
Given a 0-indexed integer array nums
, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.
You may imagine that nums[-1] = nums[n] = -∞
. In other words, an element is always considered to be strictly greater than a neighbor that is outside the array.
You must write an algorithm that runs in O(log n)
time.
Test Cases
Example 1:
Input: nums = [1,2,3,1]
Output: 2
Explanation: 3 is a peak element and your function should return the index number 2.```
**Example 2:**
Input: nums = [1,2,1,3,5,6,4] Output: 5 Explanation: Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6.```
Constraints:
-
1 <= nums.length <= 1000
-
-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1
-
nums[i] != nums[i + 1]
for all validi
.
Solution
class Solution {
public:
int findPeakElement(vector<int>& nums) {
int l = 0, r = nums.size() - 1;
while(l < r) {
int mid = l + (r-l)/2;
if (nums[mid] > nums[mid+1]) {
r = mid;
} else {
l = mid+1;
}
}
return l;
}
};
public class Solution {
public int findPeakElement(int[] nums) {
int l = 0, r = nums.length - 1;
while (l < r) {
int mid = (l + r) / 2;
if (nums[mid] > nums[mid + 1])
r = mid;
else
l = mid + 1;
}
return l;
}
}
class Solution:
def findPeakElement(self, A: List[int]) -> int:
nums = A
l, r = 0, len(nums) - 1
while l < r:
mid = (l+r) // 2
if nums[mid] > nums[mid + 1]:
r = mid
else:
l = mid + 1
return l