Implement the BSTIterator
class that represents an iterator over the in-order traversal of a binary search tree (BST):
-
BSTIterator(TreeNode root)
Initializes an object of theBSTIterator
class. Theroot
of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST. -
boolean hasNext()
Returnstrue
if there exists a number in the traversal to the right of the pointer, otherwise returnsfalse
. -
int next()
Moves the pointer to the right, then returns the number at the pointer. Notice that by initializing the pointer to a non-existent smallest number, the first call tonext()
will return the smallest element in the BST. You may assume thatnext()
calls will always be valid. That is, there will be at least a next number in the in-order traversal whennext()
is called.
Test Cases
Example 1:
**Input**
["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"]
[[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []]
**Output**
[null, 3, 7, true, 9, true, 15, true, 20, false]
**Explanation**
BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]);
bSTIterator.next(); // return 3
bSTIterator.next(); // return 7
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 9
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 15
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 20
bSTIterator.hasNext(); // return False
Constraints:
-
The number of nodes in the tree is in the range
[1, 10<sup>5</sup>]
. -
0 <= Node.val <= 10<sup>6</sup>
-
At most
10<sup>5</sup>
calls will be made tohasNext
, andnext
.
Follow up:
- Could you implement
next()
andhasNext()
to run in averageO(1)
time and useO(h)
memory, whereh
is the height of the tree?
Solution
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class BSTIterator {
queue<int> q;
void inOrder(TreeNode* root, queue<int> &q) {
if(root == NULL){
return;
}
inOrder(root->left, q);
q.push(root->val);
inOrder(root->right, q);
}
public:
BSTIterator(TreeNode* root) {
inOrder(root, q);
}
int next() {
if(!q.empty()){
int frontNode = q.front();
q.pop();
return frontNode;
}
return 0;
}
bool hasNext() {
if(!q.empty()){
return true;
}
return false;
}
};
/**
* Your BSTIterator object will be instantiated and called as such:
* BSTIterator* obj = new BSTIterator(root);
* int param_1 = obj->next();
* bool param_2 = obj->hasNext();
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class BSTIterator {
private Deque<TreeNode> stack;
public BSTIterator(TreeNode root) {
stack = new ArrayDeque<>();
TreeNode next = root;
while(next != null) {
stack.offerLast(next);
next = next.left;
}
}
public int next() {
TreeNode removedNode = stack.pollLast();
TreeNode next = removedNode.right;
while(next != null) {
stack.offerLast(next);
next = next.left;
}
return removedNode.val;
}
public boolean hasNext() {
return !stack.isEmpty();
}
}
/**
* Your BSTIterator object will be instantiated and called as such:
* BSTIterator obj = new BSTIterator(root);
* int param_1 = obj.next();
* boolean param_2 = obj.hasNext();
*/
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class BSTIterator:
def __init__(self, root: TreeNode):
self.lst = []
self.index = 0
if root:
st = [root]
while len(st) > 0:
x = st.pop()
self.lst.append(x.val)
if x.left: st.append(x.left)
if x.right: st.append(x.right)
self.lst = sorted(self.lst)
print(self.lst)
def next(self) -> int:
"""
@return the next smallest number
"""
x = self.lst[self.index]
self.index += 1
return x
def hasNext(self) -> bool:
"""
@return whether we have a next smallest number
"""
if len(self.lst) == 0: return False
if self.index < len(self.lst):
return True
return False
# Your BSTIterator object will be instantiated and called as such:
# obj = BSTIterator(root)
# param_1 = obj.next()
# param_2 = obj.hasNext()