You have a 2-D grid of size m x n
representing a box, and you have n
balls. The box is open on the top and bottom sides.
Each cell in the box has a diagonal board spanning two corners of the cell that can redirect a ball to the right or to the left.
- A board that redirects the ball to the right spans the top-left corner to the bottom-right corner and is represented in the grid as
1
. - A board that redirects the ball to the left spans the top-right corner to the bottom-left corner and is represented in the grid as
-1
.
We drop one ball at the top of each column of the box.
Each ball can get stuck in the box or fall out of the bottom.
A ball gets stuck if it hits a "V"
shaped pattern between two boards or if a board redirects the ball into either wall of the box.
Return an array answer of size n
where answer[i]
is the column that the ball falls out of at the bottom after dropping the ball from the ith column at the top,
or -1
if the ball gets stuck in the box.
Test Cases
Example 1:
Input: grid = [[1,1,1,-1,-1],[1,1,1,-1,-1],[-1,-1,-1,1,1],[1,1,1,1,-1],[-1,-1,-1,-1,-1]]
Output: [1,-1,-1,-1,-1]
Explanation: This example is shown in the photo.
Ball b0 is dropped at column 0 and falls out of the box at column 1.
Ball b1 is dropped at column 1 and will get stuck in the box between column 2 and 3 and row 1.
Ball b2 is dropped at column 2 and will get stuck on the box between column 2 and 3 and row 0.
Ball b3 is dropped at column 3 and will get stuck on the box between column 2 and 3 and row 0.
Ball b4 is dropped at column 4 and will get stuck on the box between column 2 and 3 and row 1.
Example 2:
Input: grid = [[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1]]
Output: [0,1,2,3,4,-1]