A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node’s values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.


Test Cases

Example 1:

Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
  -10
 /   \
9     20
     /  \
    15   7

Example 2:

Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
  1
 / \ 
2   3

Solution

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int maxPathSum(TreeNode* root) {
        int maxVal[1] = {INT_MIN};
        maxPathDown(root, maxVal);
        return maxVal[0];
    }

    int maxPathDown(TreeNode* root, int* maxVal) {
        if (root == nullptr) return 0;
        int left = max(0, maxPathDown(root->left, maxVal));
        int right = max(0, maxPathDown(root->right, maxVal));
        maxVal[0] = max(maxVal[0], left+right+root->val);
        return max(left, right) + root->val;
    }
};
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int maxPathSum(TreeNode root) {
        int[] maxVal = new int[]{Integer.MIN_VALUE};
        maxPathDown(root, maxVal);
        return maxVal[0];
    }

    private int maxPathDown(TreeNode root, int[] maxVal) {
        if (root == null) return 0;
        int left = Math.max(0, maxPathDown(root.left, maxVal));
        int right = Math.max(0, maxPathDown(root.right, maxVal));
        maxVal[0] = Math.max(maxVal[0], left+right+root.val);
        return Math.max(left, right) + root.val;
    }
}
from typing import Optional, List


# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right


class Solution:
    def maxPathSum(self, root: Optional[TreeNode]) -> int:
        max_value = [float('-inf')]
        self.maxPathDown(root, max_value)
        return int(max_value[0])

    def maxPathDown(self, node: Optional[TreeNode], max_value: List[float]):
        if not node:
            return 0
        left = max(0, self.maxPathDown(node.left, max_value))
        right = max(0, self.maxPathDown(node.right, max_value))
        max_value[0] = max(max_value[0], left + right + node.val)
        return max(left, right) + node.val
Time Complexity: O(h)
Space Complexity: O(1)